Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(8): 920-932.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37572668

RESUMO

The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited ß-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Animais , Humanos , Camundongos , Receptor MT1 de Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Mitocôndrias/metabolismo , Respiração
2.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408488

RESUMO

Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein. Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism, and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that have better binding affinity to the target protein. The ADME and toxicity properties indicated good pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the compounds identified better binding stability of the compounds to the desired protein. To sum up, the phytoconstituents from two plants showed better anticancer activity against TS protein that can be further developed as an anti-CRC drug.


Assuntos
Antineoplásicos , Avicennia , Catharanthus , Neoplasias Colorretais , Antineoplásicos/química , Antineoplásicos/farmacologia , Avicennia/metabolismo , Catharanthus/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Humanos , Simulação de Acoplamento Molecular , Timidilato Sintase/metabolismo
3.
Curr Med Chem ; 29(8): 1436-1458, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34238140

RESUMO

Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial- to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF- 2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-ß1, GD3s, KLK12, mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in the treatment of TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Feminino , Histonas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Quinases Relacionadas a NIMA/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
4.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836145

RESUMO

The gut microbiota consists of a community of microorganisms that inhabit the large intestine. These microbes play important roles in maintaining gut barrier integrity, inflammation, lipid and carbohydrate metabolism, immunity, and protection against pathogens. However, recent studies have shown that dysfunction in the gut microbiota composition can lead to the development of several diseases. Urolithin A has recently been approved as a functional food ingredient. In this study, we examined the potentials of urolithin A (Uro-A) and B (Uro-B) in improving metabolic functions and their impact on gut microbiota composition under a metabolically unchallenged state in normal rats. Male Wistar rats (n = 18) were randomly segregated into three groups, with Group 1 serving as the control group. Groups 2 and 3 were administered with 2.5 mg/kg Uro-A and Uro-B, respectively, for four weeks. Our results showed that both Uro-A and B improved liver and kidney functions without affecting body weight. Metagenomic analysis revealed that both Uro-A and B induced the growth of Akkermansia. However, Uro-A decreased species diversity and microbial richness and negatively impacted the composition of pathogenic microbes in normal rats. Taken together, this study showed the differential impacts of Uro-A and B on the gut microbiota composition in normal rats and would thus serve as a guide in the choice of these metabolites as a functional food ingredient or prebiotic.


Assuntos
Cumarínicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metagenoma/efeitos dos fármacos , Animais , Ingredientes de Alimentos , Alimento Funcional , Masculino , Ratos , Ratos Wistar
5.
Front Nutr ; 8: 647582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164422

RESUMO

Cancer as a disease continues to ravage the world population without regard to sex, age, and race. Due to the growing number of cases worldwide, cancer exerts a significant negative impact on global health and the economy. Interestingly, chemotherapy has been used over the years as a therapeutic intervention against cancer. However, high cost, resistance, and toxic by-effects to treatment have overshadowed some of its benefits. In recent times, efforts have been ongoing in searching for anticancer therapeutics of plant origin, focusing on polyphenols. Urolithins are secondary polyphenol metabolites derived from the gut microbial action on ellagitannins and ellagic acid-rich foods such as pomegranate, berries, and nuts. Urolithins are emerging as a new class of anticancer compounds that can mediate their cancer-preventive activities through cell cycle arrest, aromatase inhibition, induction of apoptosis, tumor suppression, promotion of autophagy, and senescence, transcriptional regulation of oncogenes, and growth factor receptors. In this review, we discussed the growing shreds of evidence supporting these secondary phenolic metabolites' anticancer properties. Furthermore, we have pointed out some of the future directions needed to establish urolithins as anticancer agents.

6.
Int J Food Sci Nutr ; 72(7): 923-934, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33618593

RESUMO

Obesity is a global health concern associated with the dysbiosis of intestinal microbial composition. In this study, we investigated the potentials of urolithin A (Uro-A) and urolithin B (Uro-B), two gut microbiota-derived metabolites of ellagitannins, in reducing body weight gain through the modulation of the gut microbiota. We established a high-fat diet (HFD)-induced obesity model in rats that were later administered with either 2.5 mg/kg of Uro-A or Uro-B. Serum biochemical parameters were quantified, and changes in the composition of the gut microbial community were analysed using 16S rDNA gene sequencing. Our results showed that the urolithins significantly decreased the body weight in HFD-fed rats and restored serum lipid profile. The taxonomic analysis showed that both Uro-A and Uro-modulated gut microbes related to body weight, dysfunctional lipid metabolism and inflammation. Overall, our results suggest that Uro-A and Uro-B possess anti-obesity properties, which may be related to the modulation of the gut microbial composition.


Assuntos
Cumarínicos/administração & dosagem , Disbiose , Microbioma Gastrointestinal , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Disbiose/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Ratos
7.
Diabetes Metab Syndr Obes ; 13: 3337-3348, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061495

RESUMO

BACKGROUND: Urolithins are gut microbiota-derived polyphenol metabolites, produced following the consumption of pomegranate, berries, and nuts. Recent studies have shown the potentials of these metabolites on reducing triglycerides accumulation in cultured hepatocytes and adipocytes. In this study, we investigated the ability of both urolithin A (Uro-A) and urolithin B (Uro-B) to attenuate obesity and associated symptoms in a high-fat diet-induced obesity model in rats. METHODS: Twenty-four male Wistar rats were randomly assigned to four groups. Group 1 was fed on a normal diet while groups 2, 3, and 4 were fed on a high-fat diet for 10 weeks. After this, groups 3 and 4 were treated with 2.5mg/kg body weight of Uro-A and Uro-B intraperitoneally, respectively. Body weight, serum lipid profile, hepatic antioxidant activity, hepatic lipid accumulation, fecal lipid content, and the expressions of genes involved in lipogenesis and hepatic ER stress were quantified. RESULTS: Indeed, a high-fat diet resulted in increased body weight, visceral adipose tissue mass, and oxidative stress in rats. However, treatment with both Uro-A and Uro-B decreased body weight and visceral adipose tissue mass. These metabolites restored hepatic antioxidant capacity and decreased lipid accumulation in addition to an increase in fecal fat excretion. Moreover, both Uro-A and Uro-B treatment downregulated the expression of LXRα and SREBP1c; involved in de novo lipogenesis while upregulating PPARα expression for increased fatty acid oxidation. Furthermore, Uro-A and Uro-B decreased the expression of PERK and IRE1α; which are involved in hepatic ER stress. Taken together, our results showed the potentials of Uro-A and Uro-B in mitigating obesity symptoms and they could thus provide promising roles in the future as functional anti-obesity candidates.

8.
Artigo em Inglês | MEDLINE | ID: mdl-26858689

RESUMO

Previous studies on the Arabian camel (Camelus dromedarius) showed beneficial effects of its milk reported in diverse models of human diseases, including a substantial hypoglycemic activity. However, the cellular and molecular mechanisms involved in such effects remain completely unknown. In this study, we hypothesized that camel milk may act at the level of human insulin receptor (hIR) and its related intracellular signaling pathways. Therefore, we examined the effect of camel milk on the activation of hIR transiently expressed in human embryonic kidney 293 (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology. BRET was used to assess, in live cells and real-time, the physical interaction between hIR and insulin receptor signaling proteins (IRS1) and the growth factor receptor-bound protein 2 (Grb2). Our data showed that camel milk did not promote any increase in the BRET signal between hIR and IRS1 or Grb2 in the absence of insulin stimulation. However, it significantly potentiated the maximal insulin-promoted BRET signal between hIR and Grb2 but not IRS1. Interestingly, camel milk appears to differentially impact the downstream signaling since it significantly activated ERK1/2 and potentiated the insulin-induced ERK1/2 but not Akt activation. These observations are to some extent consistent with the BRET data since ERK1/2 and Akt activation are known to reflect the engagement of Grb2 and IRS1 pathways, respectively. The preliminary fractionation of camel milk suggests the peptide/protein nature of the active component in camel milk. Together, our study demonstrates for the first time an allosteric effect of camel milk on insulin receptor conformation and activation with differential effects on its intracellular signaling. These findings should help to shed more light on the hypoglycemic activity of camel milk with potential therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...